Über Möglichkeiten zur Definition des Begriffes des „Nichts“ im kosmologischen Sinne

von Ludwig Engelhard

Summary: The various structures of the universe in the macroscopic as well as in the microscopic scale are examined with respect to possibilities of defining the idea of "nothing". It is shown, that we cannot think of "nothing" inside our universe — even if assuming an "ideal vacuum" somewhere: the reason are the quantumelectrodynamical vacuum fluctuations and the presence of time and geometry. In the case of a geometrically closed universe, we may use the "nothing" to speak of everything "outside". In the frame of those cosmologies, which are defined in the microscopic scale (Ur-hypothesis of v. Weizsäcker, Heisenberg's formula), we define the "nothing" being smaller than those sizes, formed by the "smallest length".
Die Energie der Schwingung einer Periode \(T = \frac{2\pi}{\omega} \) ergibt sich aus dem Integral über das innere Produkt

\[
E = \int_0^T \mathbf{K} \cdot \mathbf{ds}
\]

als auch B. Die Energie des Systems kontinuierlich veränderbar ist.

Das „Nichts“ innerhalb unseres makroskopischen Universums?

Der nächstliegende Gedanke, einfach das absolute Vakuum, welches man glaubt, daß es dies im Universum irgendwo geben könne als „das Nichts“ zu definieren, scheint an verschiede- nen Einwänden:

Es gibt ein absolutes Vakuum im kosmologischen Sinne überhaupt nicht. Einstein's spezielle Relativitätstheorie hat uns die in der Atom- und Kernphysik so präzise bestätigte Beziehung, daß Energie und Masse (Materie) gegeneinander das Gleiche seien, geliefert (Äquivalentenprinzip). Formal wird die Umrechnung zwischen Einheiten der Energie und der Masse durch

\[
E = mc^2
\]
ausgedrückt (E bedeutet die Energie, m die Masse, c die Vakuumlichtgeschwindigkeit).

Nun lehrt uns die Quantenelektrodynamik, daß es einen Raum ohne Energie, ohne mindestens die sog. elektromagnetische Nullpunktsenergie gar nicht geben kann.

Hierzu vielleicht einige Erörterungen: Betrachten wir beispielsweise den „harmonischen Oszillator“, der makroskopisch etwa durch eine schwingende Masse an einer Feder, mikroskopisch z.B. durch ein in einen Kristalleingebautes Atom dargestellt werde. Zur makroskopischen Lösung des Problems gilt es, die Differentialgleichung

\[
m \ddot{x} = -D \cdot x
\]
zu lösen. Hierin ist x eine Ortskoordinate und auf der linken Seite der Gleichung steht „Masse mal Beschleunigung (= zweite Ableitung des Ortes nach der Zeit)“, während rechts die wirkende, rücktreibende Federkraft (Federkonstante D) steht. Gleichung 2 ist also das Newton'sche Kraftgesetz.

Durch zweimaliges Integrieren findet man die Lösung

\[
x = A \cos \omega t + B \sin \omega t
\]

wobei die Kreisfrequenz: \(\omega = \sqrt{\frac{D}{m}} = \frac{2\pi}{T} \)

ist, damit die Gleichung erfüllt (\(T = \text{Periode} \)) wird, und A und B Integrationskonstanten sind, die aus den Anfangs- bzw. Randbedingungen der Bewegung zu bestimmen sind.

Wesentlich an diesem Ergebnis ist, daß je nach den Schwu- hungsweiten A und B die Energie des Systems kontinuierlich veränderbar ist.

Anders die Situation, wenn wir sehr kleine Energiebeiträge betrachten, etwa die Energie eines im Kristallgitter schwingenden Atoms. Bei kleinen Energiebeträgen muß statt der Newtonschen Kraftgesetze mit der Quantentheorie, also mit der Schrödingergleichung gerechnet werden. Diese Schrödingergleichung bringt das Planck'sche Postulat, daß Energie quantenartig ist, zum Ausdruck. Zu bemerken wäre noch, daß in der Quantentheorie (Schrödingergleichung) statt der Kräfte die Potentiale eingeht, hier also etwa ein „skalares Federspotential“ \(K \), welches dargestellt wird durch:

\[
\dot{K} = -D \cdot \dot{x} = \text{grad} \phi
\]

so z. B.:

\[
\phi = -D \frac{x^2}{2}
\]

Die Lösung des Problems „harmonischer Oszillator“ in quantentheoretischer Sicht ist überraschend. Man findet nach Lösung der Schrödingergleichung für die Energie des Systems

\[
E = (n + \frac{1}{2}) \hbar \omega; \quad n = 0, 1, 2, \ldots
\]

wobei \(\hbar = \frac{\hbar}{2\pi} \), mit \(\hbar = \text{Planck'sches Wirkungsquantum} \).

Die Energie ist – bei kleinen Energien – also z.B. für ein im Kristallgitter schwingendes Atom nicht kontinuierlich veränderbar, sondern nur in Stufen. Gemäß dem Bohrschen Korrespondenzprinzip wird die Energie „quasi“-kontinuierlich veränderbar, wenn n sehr große Werte annimmt: Dies ist die Grenze zur klassischen Physik, in diesem Beispiel des harmonischen Oszillators durch (7) ausgedrückt.

Besonders bemerkenswert an der quantentheoretischen Lösung des Problems „harmonischer Oszillator“ in (10) ist jedoch, daß die Energie der Schwingung selbst für \(n = 0 \) nicht Null wird; es ist unmöglich, einen harmonischen Oszillator in absolute Ruhе, also in einem energielosen Zustand zu versetzen, es verbleibt stets eine „Nullpunktsenergie“.

Natürlich liegt es am speziellen Kraftgesetz – oder genauer: am Potentialverlauf – ob für \(n = 0 \) eine Nullpunktsenergie übrig bleibt, oder nicht.

Betrachten wir jedoch das elektromagnetische Feld bei kleinen Energien, betrachten wir also einzelne Photonen (welche bei Energieänderungen eines Atoms emittiert werden), so dürfen wiederum nicht mehr die klassischen Maxweill'schen Gleichungen angewendet, sondern es müssen die quantentheoretischen Methoden herangezogen werden: Dies ist das Fachgebiet der Quantenelektrodynamik.

Wiederum muß man anstatt der Felder \(E \) (elektrisches Feld) und \(B \) (magnetisches Feld) die Potentiale verwenden. Während das elektrische Feld durch ein skalares Potential \(\phi \) – wie im Fall des harmonischen Oszillators – darstellbar ist, braucht man zur Darstellung eines allgemeinen Magnetfeldes ein vektorielles Potential \(A \):

\[
\begin{align*}
\vec{E} &= - \text{grad} \, \phi \\
\vec{B} &= \text{rot} \, \vec{A}
\end{align*}
\]

(11)

Wendet man nun den Formalismus der Quantentheorie auf diese Felder bzw. Potentiale an, so zeigt sich, daß das elektromagnetische Feld in eine endlich große Summe von harmonischen Oszillatoren zerlegbar ist und die Feldenergie also einem Gesetz wie in (10) folgt.

Zwar erweist sich dabei für ein „Vakuum“

\[
\begin{align*}
\langle \vec{B} \rangle &= 0 \\
\langle \vec{E} \rangle &= 0
\end{align*}
\]

(12)

d. h. im zeitlichen oder räumlichen Mittel sind die Feldstärken Null, es gilt jedoch

\[
\begin{align*}
\langle \vec{B} \rangle &= 0 \\
\langle \vec{E} \rangle &= 0
\end{align*}
\]

(13)

und da \(\vec{B} \) und \(\vec{E} \) die elektromagnetische Energie darstellen, verbleibt also auch im vom äußeren Strahlungsfeld abgeschirmten „Vakuum“ – ganz entsprechend zu Formel (10) mit \(n = 0 \) – eine „Nullpunktsenergie“. Diese kommt durch Feldfluktuationen zustande, wie Formel (12) unter dem Aspekt von (13) zu deuten ist. Die Felder fluktuieren, so daß deren Mittelwert Null wird, nicht jedoch ihr quadratischer Mittelwert, der der Energie entspricht.

Für unser kosmologisches Problem bedeutet dies, daß selbst ein „abgeschirmtes Vakuum“ eine fluktuiierende Nullpunktsenergie notwendigerweise enthalten muß und gemäß der Äquivalenz von Energie und Masse (Formel 1) mithin auch nicht „materiell“ sein kann; „nicht materiell“ jedoch durchaus unter dem Aspekt „virtueller Teilchen“, die das „Vakuum“ ausfüllen. So gesehen können wir also ganz grundsätzlich den Inhalt eines Vakuums niemals als ein „Nichts“ an sprechen.

Dennoch darf man auch hier nicht von einem „Nichts“ sprechen: Vorhanden bleibt insbesondere die gravitative Wirkung, die sich z. B. in einer Lichtablenkung oder in Bahnstörungen anderer Sterne zeigen muß; insbesondere, wenn ein schwarzes Loch der unsichtbaren Begleiterin in einem Doppelsternsystem ist.

Beinahe mehr philosophischer Natur mutet die Frage an, ob wir alles das, was heute unserer Beobachtung entzogen ist, als ein „Nichts“ bezeichnen dürfen. Gemeint sind alle jene Vorgänge, die außerhalb des „Lichtkegels“ stattfinden. Unter Licht-

Abstand s \[\text{Zweitdimensionale Erklärung des Lichtkegels} \]

kegel verstehen wir jenen Kegel im dreidimensionalen Raum, der dadurch gebildet wird, daß das Licht von einem Objekt bis zu uns eine gewisse Zeit benötigt. Die Ausbreitungsgeschwindigkeit des Lichtes ist \(c \) und damit können wir nur jenen Teil unseres Universums überblicken, der innerhalb des Kegels liegt, gebildet aus der Bedingung

\[
t_A \leq \frac{s}{c} = t_L
\]

(17)

wobei \(t_A = \text{Zei} \) mit der Ausstrahlung des Photons ist, \(s \) die Distanz zum Objekt und damit \(t_L \) die Lichtlaufzeit vom Objekt zu uns bedeutet. Alle Vorgänge außerhalb des Lichtkegels sind uns unbekannt, da deren Lichtinformation uns noch gar nicht erreicht hat, sondern erst in Zukunft erreichen wird. Den Raum außerhalb des Lichtkegels kennen wir zwar nicht, können ihn nicht kennen, aber unsere kosmologische Vorstellung über das Universum – etwa im Sinne der allgemeinen Relativitätstheorie – schließt diesen Raum gleichzeitig dem uns sichtbaren Raum ein, er enthält also mindestens eine Raum-Zeit-Geometrie, Null-
puntfluktuationen des Feldes u.s.w. und ist auch unserer Gedanken- und Vorstellungswelt nicht verschollen. Auch dieser Bereich des Universums kann daher nicht als ein „Nichts“ angesprochen werden.

Das „Nichts“ außerhalb unseres makroskopischen Universums?

Wir gehen davon aus, daß uns die Allgemeine Relativitätstheorie – gleichgültig, ob in der einfachen FormulierungEinsteins oder in den Modifikationen nach Jordan oder von Brans und Dicke – aufgezeigt hat, daß unser Universum in einer vierdimensionalen Raum-Zeit-Geometrie (die sich unserer Vorstellung entzieht) strukturiert ist. Friedmann konnte zunächst beweisen, daß die Allgemeine Relativitätstheorie keinen statischen, sondern nur einen zeitlich sich entwickelnden Kosmos zuläßt:

a) Einen Kosmos, der nach einer Expansionsphase sich wieder kontrahiert oder b) einen sich für alle Zeiten expandierenden Kosmos.

Hinzu kommt die Beobachtungstatsache, die nach ihrem Entdecker „Hubble'sches Gesetz“ genannt wird und besagt, daß alle kosmischen Objekte die Erscheinung zeigen, sich von uns mit umso größerer Geschwindigkeit zu entfernen, je weiter sie von uns entfernt sind:

\[v = H \cdot r \] (18)

wobei \(v \) die „Fluchtgeschwindigkeit“ (die man aus der Rotverschiebung der Spektrallinien bestimmt), \(r \) der Abstand des Objektes von uns und \(H \) die „Hubble-Konstante“ ist. Dieses Gesetz ist seit seiner ersten Formulierung so präzise durch Beobachtungsmaterial gesichert, daß wir sagen dürfen, daß in dem uns überschaubaren Teil des Kosmos eine Expansion stattfindet; alle Objekte entfernen sich von ihren Nachbarn.

Die Frage, ob eine Expansion irgendwann einmal in eine Kontraktion übergehen wird, oder ob die Expansion für alle Zeiten anhalten wird, läßt sich schon mit der Newton'schen Mechanik überschauen:

Es geht nämlich um das Problem, ob alle Materie (in Form von Galaxien, Gaswolken, Teilchen, Neutrinos und Antineutrinos, kurz, alles was Masse – und damit Energie trägt) außerhalb eines Radius \(r \) eine größere kinetische Energie hat als die potentielle Energie beträgt, die die Massen \(M \) geben, die sich innerhalb des Raumes von Radius \(r \) befinden.

\[\frac{G \cdot M}{r^2} \cdot m = \frac{m \cdot v^2}{2} \] (19)

Potentielle Energie der Massen \(m \) außerhalb des Bereiches \(r \) aufgrund der Gravitationswirkung von \(M \) innerhalb von \(r \).

wobei \(G \) die allgemeine Gravitationskonstante ist. Setzt man

\[M = \frac{4}{3} \pi \rho \cdot r^3 \] (20)

wobei \(\rho \) die mittlere Massendichte und betrachtet die Gesamtmasse des ganzen Kosmos dabei als konstant, so folgt:

\[G \cdot \frac{4}{3} \pi \rho r^2 = \frac{1}{2} v^2 \] (21)

ist die Massendichte \(\rho \) größer als aus dieser Gleichung errechnet, so überwiegt die potentielle Energie und wir erhalten nach anfänglicher Expansion wieder eine Kontraktion; ist \(\rho \) kleiner, so überwiegt die kinetische Energie, und die Expansion dauert ewig an. Es kommt also darauf an, ob

\[\rho \geq \rho_{krit} = \frac{v^2}{4 \pi G r^2} \] (22)

Mit dem Hubble-Gesetz (18) folgt:

\[\rho_{krit} = \frac{3H^2}{8\pi G} \] (23)

Aufgabe des Beobachters ist es, aus einer möglichst genau bestimmten Hubble-Konstanten einerseits und der mittleren Massendichte andererseits zu überprüfen, welche kosmologische Vorstellung zutrifft.

Nimmt man für die Hubble-Konstante

\[\frac{1}{H} \approx 18 \cdot 10^9 \text{ Jahre}^6 \] (24)

so kommt man auf

\[\rho_{krit} = 5,5 \cdot 10^{-27} \text{ kg/m}^3 \leq 5,5 \cdot 10^{-30} \text{ g/cm}^3 \] (25)

Experimentell findet man aber aus der Abschätzung der Massendichte der visual beobachtbaren Objekte, also im wesentlichen Galaxien mit ihren Gas-Wolken, eine mittlere Massendichte von

\[\rho = 4 \cdot 10^{-31} \ldots 10^{-30} \text{ g/cm}^3 \] (26)

Es gibt noch ein anderes Kriterium, die Frage der Dynamik des Universums zu lösen: Die von einem Urknall ausgehende Expansion des Universums muß sich im Laufe der Zeit durch die Gravitationswirkung der Massen des Universums (gemäß dem oben beschriebenen Phänomen) verlangsamen und es ist ja nur die Frage, ob es dadurch zu einer gänzlichen Umkehrung der Expansion in eine spätere Kontraktion kommt oder ob es dazu nicht ausreicht.

Mit anderen Worten: Die Hubble-Konstante, die die Expansion des Kosmos heute beschreibt, muß zu früheren Zeiten größer gewesen sein, die Expansionsgeschwindigkeit muß höher gewesen sein. Bedenkt man nun, daß die sehr weit entfernten Objekte ja auch zu einer entsprechend früheren Zeit beobachtet wurden, so kann man versuchen, die Verzögerung der Expansionsgeschwindigkeit zu bestimmen. Man führt hier – aus Gründen der formellen Allgemeinen Relativitätstheorie – einen Verzögerungsparameter \(q_0 \) ein

\[
q_0 = \frac{r - r}{t^2}
\]

(27)

wobei \(r \) die erste, \(\hat{r} \) die zweite Ableitung des Expansionsradius nach der Zeit sei. Dabei würde bedeuten:

\[q_0 > 1/2 \] expandierendes und mit \(q > 1/2 \) den Geometriefaktor

\[q_0 = 1/2 \] anschließend kontrahierendes Universum

\[q_0 < 1/2 \] endliche, unauflaufende Expansion.

Die Bestimmung dieses Verzögerungsparameters ist außerordentlich schwierig und deshalb heute noch sehr unsicher (Unsicherheit bei der Bestimmung von \(r \)). Jedoch findet man, daß

\[
q_0 = 1.5 \pm 0.9
\]

(29)

Nun aber zeigen uns die Allgemeine Relativitätstheorie (und deren o.g. Modifikationen), daß die Massen im Universum auch dessen Raum-Zeit-Geometrie bestimmen. Die geometrische Struktur des Raumes wird von der darin enthaltenen Materie bestimmt. Dabei darf man sich eine Expansion bzw. eine Kontraktion nicht auf die Materie selbst in einen unendlichen Raum hinein vorstellen, sondern der Raum als solcher expandiert; er expandiert dahin, wo zuvor ein „Nichts“ gewesen ist, wo es weder Materie noch Raum-Zeit-Geometrie gab.

Die Allgemeine Relativitätstheorie gibt uns auch eindeutige Aussagen über die Art der Geometrie des Kosmos. Und zwar bedeutet ein

expandierendes und mit \(q > 1/2 \) den Geometriefaktor

anschließend kontrahierendes Universum

\[K = 1, \] d.h. einen Raum mit positiver Krümmung, geschlossenes Universum.

Weitmodell mit \(q = 1/2 \) den Geometriefaktor

Verzögerungsparameter \(K = 0, \) d.h. einen euklidischen Raum, unbegrenzte Ausdehnung.

ewig expandierendes Universum ohne Kontraktion

\[q < 1/2 \] den Geometriefaktor

\[K = -1, \] d.h. einen Raum mit negativer Krümmung (hyperbolisch), offenes Universum

Die geometrische Struktur mit \(K = -1 \) geschlossenes Universum, endliches, aber unbegrenztes Weltall (ähnlich wie die Oberfläche einer Kugel endlich groß ist und doch unbegrenzt ist); Kugel, Ellipsoid

\[K = 0 \] euklidischer Raum

\[K = -1 \] hyperbolischer Raum (Hyperboloid)

sehen wir als die Schnitte in der 4-dimensionalen Raum-Zeit-Geometrie an, für eine feste Zeit (z.B. \(t = 0 \), die sich dann als geometrische Körper, die das Universum darstellen ergeben.

Insbesondere im Modell des geschlossenen Kosmos gibt es eine Grenzfläche, die das Universum „nach außen hin“ abschließt. Expansion bedeutet, daß sich diese Grenzfläche vergrößert. Im Fall des geschlossenen Universums ist diese Grenzfläche noch 3-dimensional leicht vorstellbar.

Die zunächst laienhaft anmutende Frage, wohin sich denn ein geschlossenes Weltmodell expandiere, was denn außerhalb des geschlossenen Weltalls bzw. seiner Grenzfläche sei, können wir nur so beantworten, daß dies ein „Nichts“ sei. Dort gibt es weder Länge (Raum) noch Zeit, weder Volumen noch Materie, denn – um es noch einmal hervorzuheben – nicht die Materie des Universums, sondern dieses selbst, samt seiner 4-dimensionaionalen Geometrie expandiert.

Dies ist auch keine Frage des heutigen Standes der Wissenschaft. Sondern ein solches Gebilde, welches – wie immer die
Entwicklung der Kosmologie gehen mag – weder Raum noch Zeit, weder Materie, Energie oder Vacuum besitzt, für das keine naturwissenschaftlichen Gesetze je gelten können, das können wir nur als „Nichts“ im ganz allgemeinen Sinne begreifen.

In diesem gleichen Sinne ist auch H. Parker's Frage „The End of Time“ zu verstehen (Astronomy 5, 1977, S. 6–17), der feststellt, daß – falls das Universum einer späteren Kontraktion zustrebt (a>1/2) – der Endzustand ein Kosmos wäre, der auf einen Punkt zusammengebrochen wäre:

„Remember it's the entire universe collapsing ... Space and all. This means that after the collapse takes place, nothing will be there“.

Das „Nichts“ im Mikrokosmos?

Max Planck hat bereits 1899 vorgeschlagen, man solle davon ausgehen, daß auch die Länge L auf einer kleinsten Länge, einer Fundamentalsstärke L₀ aufgebaut sei und sich in der Form

\[L = n \cdot L_0 \] (30)

\[n = 1, 2, 3, \ldots \] (31)

darstellen lassen. Sei L₀ nur hinreichend klein, so werde man selbst im atomaren Bereich von einer solchen Quantelung nichts merken, da n sehr große Werte habe und L daher quasi-kontinuierlich veränderbar sei. Planck schlug damals als Wert für L₀ die „Gravitationslänge“ vor

\[L_0, \text{Planck} = \sqrt{\frac{\hbar G}{c^3}} = 1.6 \cdot 10^{-33} \text{ cm} \] (32)

wobei \(\hbar = \frac{h}{2\pi} \) die durch 2π dividierte Planck'sche Konstante, G die Gravitationskonstante und c die Lichtgeschwindigkeit sei.

Gibt es eine kleinste Länge L₀ (nach (30)), so gibt es auch ein „kleinstes Volumen“ von der Größenordnung

\[V_0 \approx L_0^3 \] (33)

Der ganze Kosmos, das Universum, ist damit in seiner räumlichen Struktur „gequantelt“, er ist „körnig“, diskret aus den Elementarvolumina (33) aufgebaut.

Beim Heisenberg muß die „kleinste Länge“

\[L_0, \text{Heisenberg} \approx 10^{-13} \text{ cm} \] (34)

deshalb eingeführt werden, um die quantentheoretische Wahrheit zu deuten (negative Wahrscheinlichkeiten darf es per definitionem nicht geben) gleichzeitig mit der Endlichkeit der Lichtgeschwindigkeit (definiert begrenzter Lichtkegel) im Einklang zu haben. Bereiche, die kleiner als dies aus (34) folgende kleinste Volumen sind, sollen einfach physikalisch irrelevant sein, hier soll physikalisch Widersprüchliches (z.B. negative Wahrscheinlichkeiten) zulässig sein – selbst im Rahmen einer „einheitlichen Physik“. Das heißt aber doch nichts anderes, als daß in Volumina, kleinern als (34) vorgegeben, keine Physik je und überall gilt, insbesondere keine Kausalität, Geometrie oder Zeit, es stellt sich dann doch die Frage, was denn Volumina, kleiner als das durch (34) aufgezeigte, im Sinne Heisenbergs, anders als ein „Nichts“ darstellen.

Er geht aus von dem Gedanken Demokrits, daß es ein Kleinstes, ein Unteilbares geben müsse. Dieses Kleinstes ist weder das, was wir heute Atom nennen, noch sind es „Elementarteilchen“, deren Teilbarkeit und Struktur in der modernen Physik ja offenbar ist. v. Weizsäcker fragt nun einfach, was überhaupt das Kleinste, das Unteilbare, das Atom im Sinne Demokrits sein könne. Und er geht als Antwort, daß das letztlich Unteilbare die duale Aussage, die Aussage „Vorhanden oder nicht“, die „Ja–Nein“-Aussage, „das Volle und das Leere“ sein müsse.

In der mathematischen Formulierung durch Zweiermatrixen ergeben sich zwei wesentliche Erkenntnisse, nämlich, daß unser Anschauungsraum dreidimensional sein müsse (wie er das ja tatsächlich ist), und daß der Kosmos nur eine endliche, aber wachsende Anzahl von Uren enthält, mithin ein geschlossener, gekrümmter, sich expandierender Raum sei. Die Endlichkeit des Kosmos und die Endlichkeit der Anzahl der Uren im Kosmos (nach v. Weizsäcker) führt auf die Annahme einer kleinsten Länge, die real etwa 10⁻¹³ cm betragen soll. Diese kleinste Länge bestimmt das Volumen, welches eine Urealternative, ein Atom im Demokrit'schen Sinne einnimmt.
Ein Elementarteilchen besteht bereits aus etwa \(10^{40} \) Uren, ist also bereits ein sehr strukturiert aufgebautes Gebilde. Der ganze Kosmos enthält heute insgesamt \(10^{20} \) Ure.\(^{10}\)

Schlußbemerkung:

So absurd es zunächst erscheinen mag, es ist doch möglich, im streng naturwissenschaftlichen Sinne über das Nichts zu sprechen, ohne gleich mit dem Verstande in Konflikt zu geraten.

Wenn wir hier „das Nichts“ an den beiden kosmologischen Grenzen, der Grenze des Kosmos im Großen und der Grenze des Kosmos im Kleinen diskutieren, so mögen wir doch nicht versagen, daß dies aber gerade jene Berührungspunkte zwischen physikalischer Naturwissenschaft und erkenntnistheoretischer Philosophie sind (sofern man beides überhaupt zu trennen vermag).

Insbesondere ist die Ur-Hypothese v. Weizsäcker's aus dem Kant'schen Denken hervorgegangen, aus der Frage nach der objektivierbaren Erfahrung, aus der die Physik entwickelbar sein müsse.

Die Frage nach dem Nichts ist also untrennbar auch eine philosophische Frage, deren Aspekt wir hier aber nur am Rande gestreift haben.

Anmerkungen:

1. Pfeile über den Buchstaben symbole sollen den Vektorcharakter der betreffenden Größe andeuten.
3. \(\beta \approx 1 \) soll quantenmechanischer Mittelwert bedeutet.
4. Daß gemäß der Umkehrung der Quantenmechanik, etwa in der Form \(\Delta E \cdot \Delta t \approx h \),

Teilchen aus dem Vakuum entstehen können, wobei dann \(\Delta E \Delta t \) die „Paarbildungsgenergie“ darstellt, sofern die Lebensdauer \(\Delta t \) des Teilchen-„paars“ in der Umgebung des „Nichts“ verschwindet, ist im Grunde eine andere Formulierung des Sachverhaltes über die Nullpunktsenergie. Ein Vakuum kann nicht als materielles bezeichnet werden (beispielsweise Erzeugung von Elektron + Positron + Photon).

5. Die Physik eines schwarzen Loches kann in ihrer Grundlage schon mit der Newton'schen Mechanik verstanden werden: Die Frage nämlich, welche potentielle Energie ein Photon der Frequenz \(\nu \) und damit der Masse \(m \) (nach (1))

\[
E = mc^2
\]

noch zu überwinden vermag (klassische Berechnung der sog. Fluchtgeschwindigkeit) ergibt:

\[
G \frac{M}{r} \leq \frac{\nu^2}{2} - \frac{m}{2} \]

\[
G \frac{M}{r} \leq \frac{c^2}{2}
\]

\[
G \geq \frac{GM}{c^2}
\]

Wenn ein Stern gegebener Masse einen Radius annimmt, der diesen Wert erreicht, vermag kein Photon ihn zu verlassen.\(^{16}\)

6. Es handelt sich hier also um das gleiche klassische Problem, wie die Frage, mit welcher kinetischen Energie ein Körper die potentielle Energie der Erde überwunden haben.

10. Wir denken heute die weitest entfernten Objekte in einer Entfernung von einigen \(10^{12} \) Lichtjahren zu sehen, d.h. wir sehen sie in ihrem Zustand vor \(> 10 \) Jahren.

16. In der Sprache der Informatik: das „bit“

18. Bei einem Weitewyis von 10^{17} cm ergibt sich einfach